Posts Tagged ‘smartphone market share usa’

Smart Phone Market Share Usa

Smart Phone Market Share usa

Smart Phone Market Share Us

Smart Phone Market Share us

Worldwide Nanotechnology Thin Film Lithium-Ion Battery Market Shares Strategies, And Forecasts, 2009-2015-Aarkstore Enterprise

Worldwide nanotechnology thin film lithium-ion batteries are poised to achieve significant growth as units become more able to achieve deliver of power to electric vehicles efficiently. Less expensive lithium-ion batteries allow leveraging economies of scale and proliferation of devices into a wide range of applications. According to Susan Eustis, lead author of the study, “Economies of scale leverage the lithium-ion battery nanotechnology advances needed to make lithium-ion batteries competitive. Nanotechnology provided by lithium-ion research solves the issues poised by the need to store renewable energy. Lithium-ion batteries switch price reductions are poised to drive market adoption by making units affordable.”

Nanotechnology results obtained in the laboratory are being translated into commercial products. The processes of translating the nanotechnology science into thin film lithium ion batteries are anticipated to be ongoing. The breakthroughs of science in the laboratory have only begun to be translated into life outside the lab, with a long way to go in improving the functioning of the lithium-ion batteries. Unlike any other battery technology, thin film solid-state batteries show very high cycle life. Using very thin cathodes (0.05µm) batteries have been cycled in excess of 45,000 cycles with very limited loss in capacity. After 45,000 cycles, 95% of the original capacity remained.

Then there is the problem of translating the evolving technology into manufacturing process. What this means is that the market will be very dynamic, with the market leaders continuously being challenged by innovators, large and small that develop more cost efficient units. Systems integration and manufacturing capabilities have developed a broad family of high-power lithium-ion batteries and battery systems. A family of battery products, combined with strategic partner relationships in the transportation, electric grid services and portable power markets, position vendors to address these markets for lithium-ion batteries.

Electric Vehicles depend on design, development, manufacture, and support of advanced, rechargeable lithium-ion batteries. Batteries provide a combination of power, safety and life. Next-generation energy storage solutions are evolving as commercially available batteries. Lithium-ion batteries will play an increasingly important role in facilitating a shift toward cleaner forms of energy.

Innovative approaches to materials science and battery engineering are available from a large number of very significant companies — GE, Panasonic Sanyo / Matsushita Industrial Co., Ltd., NEC, Saft, Toshiba, BYD / Berkshire Hathaway, LG Chem, Altair Nanotechnologies, Samsung, Sony, A123 Systems with MIT technology, and Altair Nanotechnologies.

Markets for lithium-ion batteries at $911 million in 2008 are anticipated to reach $9.1 billion by 2015, growing in response to decreases in unit costs and increases. Lithiumion batteries used in Cell Phones and PCs, and in cordless power tools are proving the technology. Units are shipped into military markets and are used in satellites, proving the feasibility of systems. Small, lithium-ion prismatic batteries prove the feasibility of this technology. The large emerging markets are for hybrid and electric vehicles powered by renewable energy systems.

Report Methodology
This is the 399th report in a series of market research reports that provide forecasts in communications, telecommunications, the internet, computer, software, and telephone equipment. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. Forecasts are based on primary research and proprietary data bases. Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participation in the segment. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, and companies seeking to develop measurable market share. Over 200 in-depth interviews are conducted for each report with a broad range of key participants and opinion leaders in the market segment.
 
 
  Table of Contents : 
Thin Film Lithium Ion Battery Executive Summary   ES-1

Worldwide Nanotechnology Thin Film Lithium-Ion

Battery Market Driving Forces  ES-1

Market Driving Forces  ES-2

Nanotechnology Forms the Base for Lithium-Ion Batteries  ES-7

Competitors  ES-7

Lithium-Ion Battery Market Shares  ES-7

Lithium-Ion Battery Market Forecasts  ES-9

 

1. Thin Film Lithium Ion Battery

Market Description and Market Dynamics   1-1

1.1   Lithium-Ion Battery Target Markets  1-1

1.1.1    Project Better Place and the Renault-Nissan Alliance  1-2

1.1.2    Largest Target Market, The Transportation Industry  1-3

1.1.3    Electric Grid Services Market 1-4

1.1.4    Portable Power Market, Power Tools  1-5

1.2   Lithium-Ion Battery Technologies Transportation

Industry Target Market 1-7

1.3   Energy Storage For Grid Stabilization  1-11

1.3.1    Local Energy Storage Benefit For Utilities  1-12

1.4   Applications Require On-Printed Circuit

Board Battery Power  1-13

1.4.1    Thin-film vs. Printed Batteries  1-13

1.5   Smart Buildings  1-14

1.5.1    Permanent Power for Wireless Sensors  1-16

1.6   Battery Safety / Potential Hazards  1-17

1.7   Thin Film Solid-State Battery Construction  1-18

1.8   Battery Is Electrochemical Device  1-20

1.9   Battery Depends On Chemical Energy  1-21

1.9.1    Characteristics Of Battery Cells  1-21

1.9.2    Batteries Are Designed Differently For Various Applications  1-23

 

2. Thin Film Lithium Ion Battery Market

Shares and Market Forecasts   2-1

2.1   Worldwide Nanotechnology Thin Film Lithium-Ion

Battery Market Driving Forces  2-1

2.1.1    Market Driving Forces  2-2

2.1.2    Nanotechnology Forms the Base for Lithium-Ion Batteries  2-7

2.1.3    Competitors  2-7

2.2   Lithium-Ion Battery Market Shares  2-7

2.2.1    ExxonMobil Affiliate in Japan / Tonen Chemical 2-10

2.3   Lithium-Ion Battery Market Forecasts  2-11

2.4   Electric Vehicle and Hybrid Vehicle Lithium-Ion

Battery Market Shares  2-14

2.4.1    BYD   2-16

2.4.2    Johnson Controls-Saft 2-16

2.4.3    Saft Battery Technologies  2-17

2.4.4    A123Systems 32 Series Automotive Class

Lithium Ion™ Cells: 2-17

2.4.5    NEC and Nissen  2-19

2.4.6    LG Chem   2-20

2.4.7    EnerDel 2-20

2.4.8    Competition  2-20

2.5   Electric and Hybrid Vehicle Lithium-Ion

Battery Market Forecasts  2-21

2.5.1    Largest Target Market, The Transportation Industry  2-25

Thin Film Advanced Lithium-Ion Battery EV Market 2-27

Thin Film Lithium-Ion And Lithium Polymer Automotive Batteries  2-27

2.6   Thin-Film and Printed Batteries: On-Board

Solutions for Low-Power Electronics  2-29

2.6.1    Solicore Tiny Flat Battery  2-31

2.6.2    Thin-Film, Organic, and Printed Batteries:

On-Board Solutions for Low-Power Electronics  2-32

2.7   Cell Phone, Communications, And PC Lithium-Ion

Battery Technology Markets Discussion  2-33

2.7.1    Samsung SDI  2-33

2.7.2    BYD   2-33

2.7.3    Saft 2-33

2.7.4    Portable Power Competition  2-34

2.8   Lithium-Ion Battery Technology Portable Power

Market, Power Tools Market Shares  2-34

2.8.1    A123 Systems  2-36

2.9   Lithium-Ion Battery Technology Portable Power,

Power Tools Market Forecasts  2-37

2.10     Lithium-Ion Battery Technology Electric

Grid Services Markets  2-40

2.10.1  Electric Grid Services  2-42

2.11     Thin Film Lithium-Ion Battery Market Positioning  2-43

2.11.1  US And Its Allies Are Changing The Military Landscape  2-48

2.12     Digital Device Battery Forecasts  2-51

 

3. Thin Film Lithium-Ion Battery Product Description   3-1

3.1   A123 Systems  3-1

3.1.1    A123 Systems Lithium Ion Cell Construction

Based On A Dual Plate Tubular Design  3-4

3.1.2    A123Systems 32 Series Automotive Class

Lithium Ion™ Cells: 3-5

3.1.3    GM and A123Systems Co-Develop

Lithium-Ion Battery Cell for Chevrolet Volt 3-11

3.1.4    A123Systems / GE Production Contract for

Norewegian Think Electric Vehicles  3-12

3.1.5    A123Systems Patent for Nanophosphate™

Lithium Ion Battery Technology  3-14

3.2   LG Chem   3-15

3.2.1    LG Lithium-Ion Cylindrical Battery  3-15

3.2.2    LG Lithium-ion Polymer Battery  3-15

3.2.3    LG Lithium-ion Battery Prismatic Type  3-17

3.2.4    LG Chem   3-17

3.3   SAFT   3-18

3.3.1    Saft Lithium-ion (Li-ion) Batteries  3-18

3.3.2    Saft is Li-ion Batteries For Commercial

GEO Satellites to JSC ISS of Russia  3-19

3.3.3    Saft Contract To Power Hybrid Electric Mobile

Utility Systems From Titan Energy Development 3-21

3.3.4    Saft and ABB Develop New High Voltage Li-ion

Battery System   3-22

3.3.5    Saft Hybrid Battery Technology for Wisconsin Clean Energy  3-24

3.3.6    Saft High-Energy Lithium-Ion (Li-ion) Batteries For Raytheon  3-25

3.3.7    Saft Lithium-Ion (Li-ion) Battery Backup Systems  3-25

3.3.8    Saft Energy Storage As A Key

Renewable Energy Enabling Technology  3-26

3.3.9    Saft / Solion Large Li-ion batteries  3-27

3.3.10  Saft Lithium-Sulfur Dioxide (Li-So2) Batteries  3-31

3.3.11  Saft Lithium Technologies  3-32

3.3.12  Saft Lithium-thionyl chloride (Li-SOCl2) 3-32

3.3.13  Lithium-thionyl chloride (Li-SOCl2) – LS/LST/LSG cell ranges  3-35

3.3.14  Saft Small LS/LST bobbin cells  3-36

3.3.15  Saft Large LS/T bobbin cells  3-38

3.3.16  Saft Lithium-Manganese Dioxide (Li-MnO2) 3-43

3.3.17  Saft Lithium-ion (Li-ion) 3-43

3.4   BYD   3-50

3.4.1    Warren Buffett Buys 10 Percent Stake In BYD

Chinese Battery Manufacturer 3-50

3.4.2    BYD Battery Expertise  3-52

3.5   Panasonic / Sanyo  3-53

3.6   Samsung  3-54

3.7   Ener1  / EnerDel 3-55

3.7.1    EnerDel Lithium-Ion Prismatic Design  3-56

3.7.2    EnerDel Addressing Market Demand for

Hybrid Electric Vehicles (HEVs) 3-56

3.7.3    EnerDel 5Amp Battery Pack  3-60

3.8   Imara  3-60

3.9   ExxonMobil Affiliate in Japan / Tonen Chemical 3-62

3.9.1    Tonen Chemical Leading Supplier Of Separators

For Lithium Ion Batteries  3-63

3.10     NEC   3-63

3.10.1  Nissan and NEC Group  3-64

3.10.2  Nissan And NEC Joint Venture  3-65

3.10.3  NEC High-Performance Lithium-Ion Batteries

Employ A Compact Laminated Configuration  3-66

3.10.4  NEC / Nissan Low-Cost Lithium-Manganese Batteries  3-67

3.10.5  NEC Lamilion Energy  3-68

3.10.6  NEC Subaru  3-68

3.10.7  NEC Thin Film Battery Has Sixteen Modules

Consisting Of Twelve Cells, Serially Connected  3-69

3.10.8  NEC / Subaru Thin Film Battery Flat Shape  3-69

3.11     Sony  3-71

3.12     Matshushita Industrial Co., Ltd.  (Panasonic) 3-73

3.12.1  Panasonic Lithium Batteries  3-74

3.12.2  Panasonic Lithium-Ion Rechargeable Batteries  3-75

3.13     E-One Moli Energy  3-79

3.13.1  Product Data Sheets  3-81

3.14     QuantumSphere  3-82

3.15     Solicore Ultra Thin-Film Battery  3-84

3.15.1  Solicore’s Flexion Lithium Polymer Batteries  3-86

3.15.2  Solicore Flexion Lithium Powered Cards  3-87

3.15.3  Solicore RFID (Radio Frequency Identification) Devices  3-89

3.15.4  Solicore’s Flexion® Batteries Bluechip Million Unit Purchase  3-90

3.15.5  Solicore Supports Smart Cards  3-91

3.16     Cymbet EnerChip™ Solid-State, Rechargeable

Thin-Film Batteries  3-92

3.16.1  Cymbet Enerchip™ Sensors Support 3-94

3.17     Front Edge Technology  3-95

3.18     Excellatron Thin-Film Micro-Batteries  3-95

3.18.1  Contrast To Conventional Lithium Cells  3-95

3.18.2  Excellatron Market Advantage  3-97

3.18.3  Excellatron Battery Current State of the Art 3-99

3.18.4  Excellatron Battery Intrinsically Safe  3-101

3.18.5  High Temperature Performance of

Excellatron Thin Film Batteries  3-101

3.18.6  Excellatron Long Cycle Life  3-109

3.18.7  Excellatron Polymer Film Substrate for Thin Flexible Profile  3-111

3.18.8  Excellatron Unique Proprietary Passivation

Barrier and Packaging Solution  3-113

3.19     Front Edge 50,000 Prototypes Of Nanoenergy Batteries  3-117

3.19.1  Front Edge Technology (FET) 3-117

3.20     Infinite Power Solutions (IPS) Flexible Thin-Film Batteries  3-127

3.20.1  Infinite Power Solutions  3-129

3.21     Oak Ridge Micro-Energy  3-130

3.21.1  Oak Ridge Micro-Energy Thin Film Batteries  3-132

3.22     Energizer  3-132

3.22.1  Energizer Holdings  3-133

3.23     Valence  3-134

3.23.1  PVI for Valence’s U-Charge(R) XP Energy Storage Systems  3-134

3.23.2  Valence Lithium Phosphate  3-135

3.23.3  Valence Lithium Phosphate Stability and Dependability  3-137

3.23.4  Valence Safety Focus  3-137

3.23.5  Valence Lithium Phosphate Alternative to Lead-Acid  3-138

3.23.6  Valence Lithium Phosphate Storage and Run-Time  3-138

3.23.7  Valence Lithium Phosphate Safety and Maintenance Free  3-138

3.24     ITN Energy Systems  3-139

3.24.1  ITN Intelligent Processing, Sensors, & Controls: 3-142

3.24.2  ITN Control: 3-144

3.24.3  ITN Sensors  3-147

3.24.4  ITN Unique Sensors: X-Ray Fluorescence And

Parallel Detection Spectroscopic Ellipsometer 3-148

3.25     ULVAC   3-159

3.26     Intersil 3-159

 

4. Thin Film Lithium Ion Battery Technology   4-1

4.1   Vendor Lithium-ion Battery Strategy  4-1

4.1.1    Rechargeable Lithium Batteries Characteristics  4-2

4.2   Challenges in Battery Design  4-3

4.2.1    Advanced Lithium-ion Batteries Requirements  4-7

4.3   Vendor Lithium-Ion Battery Positioning  4-8

4.3.1    High-Quality, Volume Manufacturing Facilities  4-10

4.4   Applications Of Lithium-Ion Batteries  4-11

4.5   Mobile Phone Industry  4-12

4.5.1    Nanowires  4-13

4.5.2    Thin Film Battery Enabling Chemistries  4-13

4.5.3    The Cathodes  4-14

4.5.4    Solid State Devices Provide More Energy Density  4-14

4.6   Advantages of Lithium-Ion Batteries  4-15

4.6.1    Lithium-Ion Battery Shortcomings  4-18

4.6.2    Charging  4-19

4.6.3    Applications  4-19

4.6.4    Costs  4-20

4.7   Lithium Cell Chemistry Variants  4-20

4.7.1    Lithium-ion  4-21

4.7.2    Lithium-ion Polymer 4-22

4.7.3    Other Lithium Cathode Chemistry Variants  4-23

4.7.4    Lithium Cobalt LiCoO2  4-23

4.7.5    Lithium Manganese LiMn2O4  4-23

4.7.6    Lithium Nickel LiNiO2  4-24

4.7.7    Lithium (NCM) Nickel Cobal Manganese – Li(NiCoMn)O2  4-24

4.7.8    Lithium Iron Phosphate LiFePO4  4-24

4.8   Operating Performance Of The Cell Can Be Tuned  4-25

4.9   Lithium Metal Polymer  4-26

4.9.1    Lithium Sulphur Li2S8  4-26

4.9.2    Alternative Anode Chemistry  4-26

4.10     ExxonMobil affiliate, Tonen Chemical

Polyethylene-Based, Porous Film   4-27

4.11     Cymbet Alternate Manufacturing  4-27

4.12     Thin-Film Batteries Packaging  4-27

4.13     ITN Energy Systems Fibrous Substrates, PowerFiber  4-28

4.13.1  ITN Sensors  4-31

4.14     Cell Construction  4-32

4.15     Impact Of Nanotechnology  4-33

4.16     Thin Film Batteries  4-34

4.16.1  Thin Film Battery Timescales and Costs  4-37

4.16.2  High Power And Energy Density  4-37

4.16.3  High Rate Capability  4-38

4.17     Comparison Of Rechargeable Battery Performance  4-39

4.18     Polymer Film Substrate  4-45

4.19     Micro Battery Solid Electrolyte  4-46

 

5.1  Nanotechnology Thin Film Battery Lithium-Ion Company Profiles   5-1

5.1   Nanotechnology Thin Film Battery Lithium-Ion  5-1

5.2   A123 Systems  5-1

5.2.1    A123 Systems Revenue  5-1

5.2.2    A123Systems Registration Statement for Initial Public Offering  5-2

5.2.3    A123 Systems Batteries Benefits  5-2

5.2.4    A123 Systems Competitive Advantage  5-4

5.2.5    A123 Systems Strategy  5-7

5.2.6    A123Systems and GE   5-8

5.2.7    A123 Acquisition of Hymotion  5-9

5.2.8    Procter & Gamble Duracell and A123 Systems Collaborate  5-10

5.2.9    Cobasys and A123 Systems  5-10

5.3   Advanced Cerametrics  5-11

5.4   Altair Nanotechnologies  5-12

5.4.1    Altair Nanotechnologies Power and Energy Group  5-12

5.4.2    Altair Nanotechnologies Performance Materials Division  5-12

5.4.3    Altair Nanotechnologies Life Sciences Division  5-14

5.4.4    Altair Nanotechnologies One-Megawatt Battery

System Available for Commercial Operation by AES

Energy Storage, LLC   5-14

5.4.5    Altair Nanotechnologies Revenues  5-15

5.5   Applied Data  5-16

5.6   Bekaert 5-16

5.7   Robert Bosch GmbH   5-17

5.8   Boston Power / Sonata  5-17

5.9   BYD   5-21

5.9.1    Warren Buffett Buys 10 Percent Stake In BYD

Chinese Battery Manufacturer 5-21

5.10     Cymbet 5-23

5.10.1  Cymbet Thin-Film, Solid-State Battery Technology  5-23

5.10.2  Cymbet and ANT Wireless Sensor Network  5-23

5.10.3  Garmin International ANT™ Wireless Network  5-25

5.11     Dow   5-25

5.12     E-One Moli Energy Group  5-26

5.13     Ener1  5-27

5.13.1  Ener1 Third Quarter 2008 Revenue  5-27

5.13.2  Ener1 Positioning Technology Originally

Pioneered By Argonne National Lab  5-30

5.13.3  Ener1 Acquires Enertech Leading Korean

Lithium-ion Battery Cell Producer 5-31

5.13.4  Ener1 / Enertech Specializes In Producing

Large Format Flat (“Prismatic”) Cells  5-32

5.13.5  EnerDel Operations  5-34

5.14     Energizer  5-39

5.15     Excellatron  5-44

5.16     Exon  5-45

5.16.1  ExxonMobil Chemical / Tonen Chemical Corporation  5-46

5.17     Front Edge Technology (FET) 5-47

5.18     GE   5-47

5.18.1  GE Global Research  5-48

5.18.2  GE Energy Financial Services  5-48

5.19     GM    5-48

5.19.1  General Motors Faces Bankruptcy  5-50

5.20     Ignite  5-51

5.21     IPS  5-51

5.22     Johnson Controls-Saft 5-52

5.23     KSW Microtec  5-52

5.24     LG Petrochemical 5-53

5.24.1  LG Chem   5-54

5.25     MMT Funds  5-54

5.26     NEC   5-54

5.26.1  Nissan Motor Co., Ltd., NEC, And Subsidiary

NEC TOKIN Joint-Venture Company – Automotive

Energy Supply Corporation (AESC) – 5-55

5.26.2  First Commercial Application For AESC’s Li-Ion Batteries  5-57

5.26.3  NEC TOKIN Lithium-Manganese Electrodes by 2009  5-59

5.26.4  Nissan Partnership With NEC   5-59

5.26.5  NEC Lamilion Energy  5-60

5.27     Oak Ridge Micro-Energy  5-60

5.28     Panasonic / Sanyo  5-61

5.29     QuantumSphere  5-63

5.30     Saft 5-64

5.30.1  Saft Battery Technologies  5-66

5.30.2  Saft Industrial Battery Group (IBG) 5-68

5.30.3  Saft Specialty Battery Group (SBG) 5-69

5.30.4  Saft Rechargeable Battery Systems (RBS) 5-71

5.30.5  Saft Research and Development 5-71

5.30.6  Johnson Controls-Saft United States Advanced

Battery Consortium (USABC) 5-72

5.31     Samsung  5-73

5.32     Solicore  5-73

5.32.1  Solicore’s Flexion® Batteries Bluechip Million Unit Purchase  5-74

5.32.2  Solicore Embedded Power Solutions  5-75

5.33     Think  5-75

5.34     Valence  5-76

5.34.1  Valence Strategy  5-77

5.34.2  Phases Of Valence Business Strategy  5-78

5.35     Ulvac  5-80

 

Tables and Figures
Table ES-1  ES-4

Lithium-Ion Battery Market Driving Forces 

Table ES-2  ES-6

Energy Advantages Of Thin-Film Batteries 

Figure ES-3  ES-8

Worldwide Lithium-Ion Thin Film Advanced Battery

Shipments, Market Shares, Dollars, 2008 

Figure ES-4  ES-10

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

 

Table 1-1  1-3

Principal Features Used To Compare Rechargeable Batteries 

Figure 1-2  1-8

BMW’s Mini E Electric Car Powered By A Rechargeable Lithium-Ion Battery 

Table 1-3  1-9

Examples of Hybrid Electric Vehicles 

Figure 1-4  1-19

Typical Structure Of A Thin Film Solid State Battery 

Table 1-5  1-22

Characteristics Of Battery Cells 

 

Table 2-1  2-4

Lithium-Ion Battery Market Driving Forces 

Table 2-2  2-6

Energy Advantages Of Thin-Film Batteries 

Figure 2-3  2-8

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Table 2-4  2-9

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Figure 2-5  2-12

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

Figure 2-6  2-13

Worldwide Lithium-Ion and Advanced Lithium-ion

Battery Market Forecasts,  Automotive, Power Tools,

Electric Grid, and PC Card,  Dollars, 2009-2015 

Figure 2-7  2-14

Worldwide Lithium-Ion Thin Film Automotive Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Figure 2-8  2-15

Worldwide Lithium-Ion Thin Film Automotive Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

 

Figure 2-9  2-21

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

Figure 2-10  2-22

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Units, 2009-2015 

Figure 2-11  2-23

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Units and Dollars, 2009-2015 

Figure 2-12  2-30

Worldwide PC Card On Board Lithium-Ion Batteries 

Market Forecasts, Dollars, 2009-2015 

Figure 2-13  2-35

Worldwide Lithium-Ion Thin Film Cordless Tool Advanced Battery Shipments, Market Shares, Dollars, 2008 

Table 2-14  2-36

Worldwide Lithium-Ion Thin Film Cordless Tool Advanced Battery Shipments, Market Shares, Dollars, 2008 

Figure 2-15  2-38

Worldwide Lithium-Ion Battery Portable Power

Tool and Advanced Portable Battery Shipments,

Market Forecasts, Dollars, 2009-2015 

Figure 2-16  2-41

Worldwide Electric Grid Lithium-Ion Battery

Storage Market Forecasts, Dollars, 2009-2015 

Table 2-17  2-45

Commercialization Challenges Of The Automotive,

Truck, and Bus Thin Film Battery Industry 

Table 2-18  2-47

Integrated Thin Film Battery Personal Transport

Power Systems 

Table 2-19  2-49

Requirements For Advanced Power Sources In A

Variety Of Military Applications 

Table 2-20  2-50

Large-Format Lithium-Ion Battery Key Advantages 

Table 2-20 (Continued) 2-51

Large-Format Lithium-Ion Battery Key Advantages 

 

Figure 3-1  3-2

A123 Systems Lithium Ion Battery 

Table 3-2  3-3

A123 Systems APR18650M1 Features 

Figure 3-3  3-4

A123 Systems lithium ion battery Cells: 26650 

Figure 3-4  3-5

A123 Cells: 32 Series 

Figure 3-5  3-7

A123 Systems Hybrid Characteristics 

Figure 3-6  3-8

A123 Systems Hybrid Discharge Characteristics 

 

Table 3-7  3-9

A123 Systems Benefits…

Table 3-8  3-10

A123 Systems Heavy Duty Custom and Standard Solutions 

Figure 3-9  3-16

LG Chem Lithium-Ion Batteries 

Table 3-10  3-32

Saft Lithium Technologies 

Table 3-11  3-33

Saft Lithium-Ion Battery Main applications 

Table 3-11  (Continued) 3-34

Saft Lithium-Ion Battery Main applications 

Figure 3-12  3-35

Saft Non Rechargeable Battery 

Table 3-13  3-39

Saft Lithium-Ion Construction Features 

Table 3-14  3-40

Saft Lithium-Ion Battery Benefits 

Figure 3-15  3-42

Saft Lithium-Sulfur Dioxide (Li-SO2) Batteries 

Table 3-16  3-44

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-45

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-46

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-47

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-48

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-49

Saft Lithium-Ion Battery Variations 

Figure 3-17  3-57

EnerDel Automotive Battery 

Table 3-18  3-58

EnerDel Lithium Ion Battery System for HEVs 

Table 3-19  3-59

EnerDel Automotive Battery Features 

Table 3-20  3-60

Imara Thin Film Battery Cells 

Figure 3-21  3-65

NEC Fuel Cells and Catalysts 

Table 3-22  3-72

Key Features of Sony NP-FP71 Hybrid Lithium Ion

Rechargeable Battery 

Table 3-22  (Continued) 3-73

Key Features of Sony NP-FP71 Hybrid Lithium Ion

Rechargeable Battery 

Figure 3-23  3-74

Panasonic Lithium Batteries 

Figure 3-24  3-75

Panasonic Lithium-Ion Rechargable Batteries 

Table 3-25  3-76

Panasonic Rechargeable Lithium ion Batteries Features:

Table 3-26  3-76

Panasonic Rechargeable Lithium ion Batteries 

Table 3-27  3-77

Panasonic Rechargeable Lithium ion Batteries 

Table 3-28  3-85

Solicore Flexion Battery Product Features:

Table 3-29  3-86

Solicore’s Flexion Lithium Polymer Battery Applications 

Table 3-30  3-87

Solicore’s Flexion Lithium Polymer Battery Uses 

Figure 3-31  3-88

Solicore Flexion High Temperature Batteries Survive Lamination 

Table 3-31A   3-89

Solicore RFID (Radio Frequency Identification) Applications 

Table 3-32  3-96

Excellatron Nanotechnology Thin Film Battery Features 

Table 3-33  3-97

Excellatron Battery Advantages 

Table 3-34  3-99

Excellatron Battery Thin Film Solid State Battery Components 

Figure 3-35  3-102

Excellatron Thin Film Battery Charge/Discharge Profile at 25ºC.

Figure 3-36  3-103

Excellatron Thin Film Battery Charge/Discharge

Profile At 150ºC.

Figure 3-37  3-104

Excellatron High Temperature (150ºC) Charge And

Discharge Capacity 

Figure 3-38  3-106

Excellatron Capacity And Resistance Of Thin Film Battery

As A Function Of Temperature 

Figure 3-39  3-106

Excellatron’s Battery (0.1 mAh) Discharged By A 100 mA

Pulse at 80ºC.

Figure 3-40  3-108

Excellatron High Rate Pulse Discharge 

Figure 3-41  3-109

Long Term Cyclability Of A Thin Film Solid State Battery 

Figure 3-42: 3-110

Excellatron Thin Film Battery Long Term Cyclability 

Figure 3-43  3-111

Discharge Capacity Of Several Typical Cathode Materials 

Figure 3-44: 3-112

Excellatron Thin film batteries deposited on a thin polymer substrate.

Figure 3-45  3-114

Excellatron Proprietary Passivation Barrier and Packaging 

Table 3-46  3-115

Comparison Of Battery Performances 

Figure 3-47  3-131

Oak Ridge Construction of a Thin Film Battery 

Table 3-48  3-136

Key Features of Valence Lithium Phosphate Technology 

Table 3-49  3-139

ITN Commercial Markets:

Figure 3-50  3-140

ITN Thin Film Battery:

Table 3-51  3-141

ITN Thin Film Battery Design Features/Advantages 

Table 3-52  3-142

ITN Thin Film Battery Economical production 

Table 3-53  3-143

ITN Thin Film Battery Strengths 

Figure 3-54  3-145

ITN Intelligent Process Control

Figure 3-55  3-146

Framework of Intelligent Processing of Materials 

Figure 3-56  3-149

XRF Instrument Developed by ITN Used on a System  

Figure 3-57  3-150

Thin Film Deposition 

Figure 3- 58  3-150

ITP Thin-film Process 

Table 3-59  3-151

Thin-film Process Capabilities 

Table 3-60  3-152

ITNThin-film Material Processing Experience Metals 

 

Table 4-1  4-4

Challenges in Lithium-ion Battery Design 

Table 4-2  4-35

Thin Film Battery Unique Properties 

Table 4-3  4-38

Comparison of battery performances 

Table 4-4  4-40

Comparison of battery performances 

Table 4-5  4-42

Thin Films For Advanced Batteries 

Table 4-6  4-43

Thin Film Batteries Technology 

Table 4-7  4-44

Thin Film Battery / Lithium Air Batteries Applications 

Figure 4-8  4-45

Polymer Film Substrate Thin Flexible battery Profiles 

Figure 4-9  4-46

Design Alternatives of Thin Film Rechargable Batteries 

 

Table 5-1  5-3

A123 Systems Batteries Benefits 

Table 5-2  5-5

A123 Systems Competitive Positioning 

Table 5-2  (Continued) 5-6

A123 Systems Competitive Positioning 

Table 5-2  (Continued) 5-7

A123 Systems Competitive Positioning 

Figure 5-3  5-19

Boston-Power Charge Curve 

 

Figure 5-4  5-20

Boston-Power Discharge Curve 

Figure 5-5  5-35

EnerDel Operations 

Figure 5-6  5-36

EnerDel Lithium Power Systems 

Figure 5-7  5-37

EnerDel Lithium Power USABC Contracts 

Figure 5-8  5-38

EnerDel Lithium Power Think Projct

Figure 5-9  5-63

Sanyo Battery Targets 2020 

Figure 5-10  5-65

Saft Sales Segments Half 1, 2008 

Figure 5-11  5-67

Saft Revenue H1 2008 

Figure 5-12  5-81

Ulvac Vacuum Pumps, Gauges, and Valves
 
 

Worldwide nanotechnology thin film lithium-ion batteries are poised to achieve significant growth as units become more able to achieve deliver of power to electric vehicles efficiently. Less expensive lithium-ion batteries allow leveraging economies of scale and proliferation of devices into a wide range of applications. According to Susan Eustis, lead author of the study, “Economies of scale leverage the lithium-ion battery nanotechnology advances needed to make lithium-ion batteries competitive. Nanotechnology provided by lithium-ion research solves the issues poised by the need to store renewable energy. Lithium-ion batteries switch price reductions are poised to drive market adoption by making units affordable.”

Nanotechnology results obtained in the laboratory are being translated into commercial products. The processes of translating the nanotechnology science into thin film lithium ion batteries are anticipated to be ongoing. The breakthroughs of science in the laboratory have only begun to be translated into life outside the lab, with a long way to go in improving the functioning of the lithium-ion batteries. Unlike any other battery technology, thin film solid-state batteries show very high cycle life. Using very thin cathodes (0.05µm) batteries have been cycled in excess of 45,000 cycles with very limited loss in capacity. After 45,000 cycles, 95% of the original capacity remained.

Then there is the problem of translating the evolving technology into manufacturing process. What this means is that the market will be very dynamic, with the market leaders continuously being challenged by innovators, large and small that develop more cost efficient units. Systems integration and manufacturing capabilities have developed a broad family of high-power lithium-ion batteries and battery systems. A family of battery products, combined with strategic partner relationships in the transportation, electric grid services and portable power markets, position vendors to address these markets for lithium-ion batteries.

Electric Vehicles depend on design, development, manufacture, and support of advanced, rechargeable lithium-ion batteries. Batteries provide a combination of power, safety and life. Next-generation energy storage solutions are evolving as commercially available batteries. Lithium-ion batteries will play an increasingly important role in facilitating a shift toward cleaner forms of energy.

Innovative approaches to materials science and battery engineering are available from a large number of very significant companies — GE, Panasonic Sanyo / Matsushita Industrial Co., Ltd., NEC, Saft, Toshiba, BYD / Berkshire Hathaway, LG Chem, Altair Nanotechnologies, Samsung, Sony, A123 Systems with MIT technology, and Altair Nanotechnologies.

Markets for lithium-ion batteries at $911 million in 2008 are anticipated to reach $9.1 billion by 2015, growing in response to decreases in unit costs and increases. Lithiumion batteries used in cell phones and PCs, and in cordless power tools are proving the technology. Units are shipped into military markets and are used in satellites, proving the feasibility of systems. Small, lithium-ion prismatic batteries prove the feasibility of this technology. The large emerging markets are for hybrid and electric vehicles powered by renewable energy systems.

Report Methodology
This is the 399th report in a series of market research reports that provide forecasts in communications, telecommunications, the internet, computer, software, and telephone equipment. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. Forecasts are based on primary research and proprietary data bases. Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participation in the segment. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, and companies seeking to develop measurable market share. Over 200 in-depth interviews are conducted for each report with a broad range of key participants and opinion leaders in the market segment.
 
 
  Table of Contents : 
Thin Film Lithium Ion Battery Executive Summary   ES-1

Worldwide Nanotechnology Thin Film Lithium-Ion

Battery Market Driving Forces  ES-1

Market Driving Forces  ES-2

Nanotechnology Forms the Base for Lithium-Ion Batteries  ES-7

Competitors  ES-7

Lithium-Ion Battery Market Shares  ES-7

Lithium-Ion Battery Market Forecasts  ES-9

 

1. Thin Film Lithium Ion Battery

Market Description and Market Dynamics   1-1

1.1   Lithium-Ion Battery Target Markets  1-1

1.1.1    Project Better Place and the Renault-Nissan Alliance  1-2

1.1.2    Largest Target Market, The Transportation Industry  1-3

1.1.3    Electric Grid Services Market 1-4

1.1.4    Portable Power Market, Power Tools  1-5

1.2   Lithium-Ion Battery Technologies Transportation

Industry Target Market 1-7

1.3   Energy Storage For Grid Stabilization  1-11

1.3.1    Local Energy Storage Benefit For Utilities  1-12

1.4   Applications Require On-Printed Circuit

Board Battery Power  1-13

1.4.1    Thin-film vs. Printed Batteries  1-13

1.5   Smart Buildings  1-14

1.5.1    Permanent Power for Wireless Sensors  1-16

1.6   Battery Safety / Potential Hazards  1-17

1.7   Thin Film Solid-State Battery Construction  1-18

1.8   Battery Is Electrochemical Device  1-20

1.9   Battery Depends On Chemical Energy  1-21

1.9.1    Characteristics Of Battery Cells  1-21

1.9.2    Batteries Are Designed Differently For Various Applications  1-23

 

2. Thin Film Lithium Ion Battery Market

Shares and Market Forecasts   2-1

2.1   Worldwide Nanotechnology Thin Film Lithium-Ion

Battery Market Driving Forces  2-1

2.1.1    Market Driving Forces  2-2

2.1.2    Nanotechnology Forms the Base for Lithium-Ion Batteries  2-7

2.1.3    Competitors  2-7

2.2   Lithium-Ion Battery Market Shares  2-7

2.2.1    ExxonMobil Affiliate in Japan / Tonen Chemical 2-10

2.3   Lithium-Ion Battery Market Forecasts  2-11

2.4   Electric Vehicle and Hybrid Vehicle Lithium-Ion

Battery Market Shares  2-14

2.4.1    BYD   2-16

2.4.2    Johnson Controls-Saft 2-16

2.4.3    Saft Battery Technologies  2-17

2.4.4    A123Systems 32 Series Automotive Class

Lithium Ion™ Cells: 2-17

2.4.5    NEC and Nissen  2-19

2.4.6    LG Chem   2-20

2.4.7    EnerDel 2-20

2.4.8    Competition  2-20

2.5   Electric and Hybrid Vehicle Lithium-Ion

Battery Market Forecasts  2-21

2.5.1    Largest Target Market, The Transportation Industry  2-25

Thin Film Advanced Lithium-Ion Battery EV Market 2-27

Thin Film Lithium-Ion And Lithium Polymer Automotive Batteries  2-27

2.6   Thin-Film and Printed Batteries: On-Board

Solutions for Low-Power Electronics  2-29

2.6.1    Solicore Tiny Flat Battery  2-31

2.6.2    Thin-Film, Organic, and Printed Batteries:

On-Board Solutions for Low-Power Electronics  2-32

2.7   Cell Phone, Communications, And PC Lithium-Ion

Battery Technology Markets Discussion  2-33

2.7.1    Samsung SDI  2-33

2.7.2    BYD   2-33

2.7.3    Saft 2-33

2.7.4    Portable Power Competition  2-34

2.8   Lithium-Ion Battery Technology Portable Power

Market, Power Tools Market Shares  2-34

2.8.1    A123 Systems  2-36

2.9   Lithium-Ion Battery Technology Portable Power,

Power Tools Market Forecasts  2-37

2.10     Lithium-Ion Battery Technology Electric

Grid Services Markets  2-40

2.10.1  Electric Grid Services  2-42

2.11     Thin Film Lithium-Ion Battery Market Positioning  2-43

2.11.1  US And Its Allies Are Changing The Military Landscape  2-48

2.12     Digital Device Battery Forecasts  2-51

 

3. Thin Film Lithium-Ion Battery Product Description   3-1

3.1   A123 Systems  3-1

3.1.1    A123 Systems Lithium Ion Cell Construction

Based On A Dual Plate Tubular Design  3-4

3.1.2    A123Systems 32 Series Automotive Class

Lithium Ion™ Cells: 3-5

3.1.3    GM and A123Systems Co-Develop

Lithium-Ion Battery Cell for Chevrolet Volt 3-11

3.1.4    A123Systems / GE Production Contract for

Norewegian Think Electric Vehicles  3-12

3.1.5    A123Systems Patent for Nanophosphate™

Lithium Ion Battery Technology  3-14

3.2   LG Chem   3-15

3.2.1    LG Lithium-Ion Cylindrical Battery  3-15

3.2.2    LG Lithium-ion Polymer Battery  3-15

3.2.3    LG Lithium-ion Battery Prismatic Type  3-17

3.2.4    LG Chem   3-17

3.3   SAFT   3-18

3.3.1    Saft Lithium-ion (Li-ion) Batteries  3-18

3.3.2    Saft is Li-ion Batteries For Commercial

GEO Satellites to JSC ISS of Russia  3-19

3.3.3    Saft Contract To Power Hybrid Electric Mobile

Utility Systems From Titan Energy Development 3-21

3.3.4    Saft and ABB Develop New High Voltage Li-ion

Battery System   3-22

3.3.5    Saft Hybrid Battery Technology for Wisconsin Clean Energy  3-24

3.3.6    Saft High-Energy Lithium-Ion (Li-ion) Batteries For Raytheon  3-25

3.3.7    Saft Lithium-Ion (Li-ion) Battery Backup Systems  3-25

3.3.8    Saft Energy Storage As A Key

Renewable Energy Enabling Technology  3-26

3.3.9    Saft / Solion Large Li-ion batteries  3-27

3.3.10  Saft Lithium-Sulfur Dioxide (Li-So2) Batteries  3-31

3.3.11  Saft Lithium Technologies  3-32

3.3.12  Saft Lithium-thionyl chloride (Li-SOCl2) 3-32

3.3.13  Lithium-thionyl chloride (Li-SOCl2) – LS/LST/LSG cell ranges  3-35

3.3.14  Saft Small LS/LST bobbin cells  3-36

3.3.15  Saft Large LS/T bobbin cells  3-38

3.3.16  Saft Lithium-Manganese Dioxide (Li-MnO2) 3-43

3.3.17  Saft Lithium-ion (Li-ion) 3-43

3.4   BYD   3-50

3.4.1    Warren Buffett Buys 10 Percent Stake In BYD

Chinese Battery Manufacturer 3-50

3.4.2    BYD Battery Expertise  3-52

3.5   Panasonic / Sanyo  3-53

3.6   Samsung  3-54

3.7   Ener1  / EnerDel 3-55

3.7.1    EnerDel Lithium-Ion Prismatic Design  3-56

3.7.2    EnerDel Addressing Market Demand for

Hybrid Electric Vehicles (HEVs) 3-56

3.7.3    EnerDel 5Amp Battery Pack  3-60

3.8   Imara  3-60

3.9   ExxonMobil Affiliate in Japan / Tonen Chemical 3-62

3.9.1    Tonen Chemical Leading Supplier Of Separators

For Lithium Ion Batteries  3-63

3.10     NEC   3-63

3.10.1  Nissan and NEC Group  3-64

3.10.2  Nissan And NEC Joint Venture  3-65

3.10.3  NEC High-Performance Lithium-Ion Batteries

Employ A Compact Laminated Configuration  3-66

3.10.4  NEC / Nissan Low-Cost Lithium-Manganese Batteries  3-67

3.10.5  NEC Lamilion Energy  3-68

3.10.6  NEC Subaru  3-68

3.10.7  NEC Thin Film Battery Has Sixteen Modules

Consisting Of Twelve Cells, Serially Connected  3-69

3.10.8  NEC / Subaru Thin Film Battery Flat Shape  3-69

3.11     Sony  3-71

3.12     Matshushita Industrial Co., Ltd.  (Panasonic) 3-73

3.12.1  Panasonic Lithium Batteries  3-74

3.12.2  Panasonic Lithium-Ion Rechargeable Batteries  3-75

3.13     E-One Moli Energy  3-79

3.13.1  Product Data Sheets  3-81

3.14     QuantumSphere  3-82

3.15     Solicore Ultra Thin-Film Battery  3-84

3.15.1  Solicore’s Flexion Lithium Polymer Batteries  3-86

3.15.2  Solicore Flexion Lithium Powered Cards  3-87

3.15.3  Solicore RFID (Radio Frequency Identification) Devices  3-89

3.15.4  Solicore’s Flexion® Batteries Bluechip Million Unit Purchase  3-90

3.15.5  Solicore Supports Smart Cards  3-91

3.16     Cymbet EnerChip™ Solid-State, Rechargeable

Thin-Film Batteries  3-92

3.16.1  Cymbet Enerchip™ Sensors Support 3-94

3.17     Front Edge Technology  3-95

3.18     Excellatron Thin-Film Micro-Batteries  3-95

3.18.1  Contrast To Conventional Lithium Cells  3-95

3.18.2  Excellatron Market Advantage  3-97

3.18.3  Excellatron Battery Current State of the Art 3-99

3.18.4  Excellatron Battery Intrinsically Safe  3-101

3.18.5  High Temperature Performance of

Excellatron Thin Film Batteries  3-101

3.18.6  Excellatron Long Cycle Life  3-109

3.18.7  Excellatron Polymer Film Substrate for Thin Flexible Profile  3-111

3.18.8  Excellatron Unique Proprietary Passivation

Barrier and Packaging Solution  3-113

3.19     Front Edge 50,000 Prototypes Of Nanoenergy Batteries  3-117

3.19.1  Front Edge Technology (FET) 3-117

3.20     Infinite Power Solutions (IPS) Flexible Thin-Film Batteries  3-127

3.20.1  Infinite Power Solutions  3-129

3.21     Oak Ridge Micro-Energy  3-130

3.21.1  Oak Ridge Micro-Energy Thin Film Batteries  3-132

3.22     Energizer  3-132

3.22.1  Energizer Holdings  3-133

3.23     Valence  3-134

3.23.1  PVI for Valence’s U-Charge(R) XP Energy Storage Systems  3-134

3.23.2  Valence Lithium Phosphate  3-135

3.23.3  Valence Lithium Phosphate Stability and Dependability  3-137

3.23.4  Valence Safety Focus  3-137

3.23.5  Valence Lithium Phosphate Alternative to Lead-Acid  3-138

3.23.6  Valence Lithium Phosphate Storage and Run-Time  3-138

3.23.7  Valence Lithium Phosphate Safety and Maintenance Free  3-138

3.24     ITN Energy Systems  3-139

3.24.1  ITN Intelligent Processing, Sensors, & Controls: 3-142

3.24.2  ITN Control: 3-144

3.24.3  ITN Sensors  3-147

3.24.4  ITN Unique Sensors: X-Ray Fluorescence And

Parallel Detection Spectroscopic Ellipsometer 3-148

3.25     ULVAC   3-159

3.26     Intersil 3-159

 

4. Thin Film Lithium Ion Battery Technology   4-1

4.1   Vendor Lithium-ion Battery Strategy  4-1

4.1.1    Rechargeable Lithium Batteries Characteristics  4-2

4.2   Challenges in Battery Design  4-3

4.2.1    Advanced Lithium-ion Batteries Requirements  4-7

4.3   Vendor Lithium-Ion Battery Positioning  4-8

4.3.1    High-Quality, Volume Manufacturing Facilities  4-10

4.4   Applications Of Lithium-Ion Batteries  4-11

4.5   Mobile Phone Industry  4-12

4.5.1    Nanowires  4-13

4.5.2    Thin Film Battery Enabling Chemistries  4-13

4.5.3    The Cathodes  4-14

4.5.4    Solid State Devices Provide More Energy Density  4-14

4.6   Advantages of Lithium-Ion Batteries  4-15

4.6.1    Lithium-Ion Battery Shortcomings  4-18

4.6.2    Charging  4-19

4.6.3    Applications  4-19

4.6.4    Costs  4-20

4.7   Lithium Cell Chemistry Variants  4-20

4.7.1    Lithium-ion  4-21

4.7.2    Lithium-ion Polymer 4-22

4.7.3    Other Lithium Cathode Chemistry Variants  4-23

4.7.4    Lithium Cobalt LiCoO2  4-23

4.7.5    Lithium Manganese LiMn2O4  4-23

4.7.6    Lithium Nickel LiNiO2  4-24

4.7.7    Lithium (NCM) Nickel Cobal Manganese – Li(NiCoMn)O2  4-24

4.7.8    Lithium Iron Phosphate LiFePO4  4-24

4.8   Operating Performance Of The Cell Can Be Tuned  4-25

4.9   Lithium Metal Polymer  4-26

4.9.1    Lithium Sulphur Li2S8  4-26

4.9.2    Alternative Anode Chemistry  4-26

4.10     ExxonMobil affiliate, Tonen Chemical

Polyethylene-Based, Porous Film   4-27

4.11     Cymbet Alternate Manufacturing  4-27

4.12     Thin-Film Batteries Packaging  4-27

4.13     ITN Energy Systems Fibrous Substrates, PowerFiber  4-28

4.13.1  ITN Sensors  4-31

4.14     Cell Construction  4-32

4.15     Impact Of Nanotechnology  4-33

4.16     Thin Film Batteries  4-34

4.16.1  Thin Film Battery Timescales and Costs  4-37

4.16.2  High Power And Energy Density  4-37

4.16.3  High Rate Capability  4-38

4.17     Comparison Of Rechargeable Battery Performance  4-39

4.18     Polymer Film Substrate  4-45

4.19     Micro Battery Solid Electrolyte  4-46

 

5.1  Nanotechnology Thin Film Battery Lithium-Ion Company Profiles   5-1

5.1   Nanotechnology Thin Film Battery Lithium-Ion  5-1

5.2   A123 Systems  5-1

5.2.1    A123 Systems Revenue  5-1

5.2.2    A123Systems Registration Statement for Initial Public Offering  5-2

5.2.3    A123 Systems Batteries Benefits  5-2

5.2.4    A123 Systems Competitive Advantage  5-4

5.2.5    A123 Systems Strategy  5-7

5.2.6    A123Systems and GE   5-8

5.2.7    A123 Acquisition of Hymotion  5-9

5.2.8    Procter & Gamble Duracell and A123 Systems Collaborate  5-10

5.2.9    Cobasys and A123 Systems  5-10

5.3   Advanced Cerametrics  5-11

5.4   Altair Nanotechnologies  5-12

5.4.1    Altair Nanotechnologies Power and Energy Group  5-12

5.4.2    Altair Nanotechnologies Performance Materials Division  5-12

5.4.3    Altair Nanotechnologies Life Sciences Division  5-14

5.4.4    Altair Nanotechnologies One-Megawatt Battery

System Available for Commercial Operation by AES

Energy Storage, LLC   5-14

5.4.5    Altair Nanotechnologies Revenues  5-15

5.5   Applied Data  5-16

5.6   Bekaert 5-16

5.7   Robert Bosch GmbH   5-17

5.8   Boston Power / Sonata  5-17

5.9   BYD   5-21

5.9.1    Warren Buffett Buys 10 Percent Stake In BYD

Chinese Battery Manufacturer 5-21

5.10     Cymbet 5-23

5.10.1  Cymbet Thin-Film, Solid-State Battery Technology  5-23

5.10.2  Cymbet and ANT Wireless Sensor Network  5-23

5.10.3  Garmin International ANT™ Wireless Network  5-25

5.11     Dow   5-25

5.12     E-One Moli Energy Group  5-26

5.13     Ener1  5-27

5.13.1  Ener1 Third Quarter 2008 Revenue  5-27

5.13.2  Ener1 Positioning Technology Originally

Pioneered By Argonne National Lab  5-30

5.13.3  Ener1 Acquires Enertech Leading Korean

Lithium-ion Battery Cell Producer 5-31

5.13.4  Ener1 / Enertech Specializes In Producing

Large Format Flat (“Prismatic”) Cells  5-32

5.13.5  EnerDel Operations  5-34

5.14     Energizer  5-39

5.15     Excellatron  5-44

5.16     Exon  5-45

5.16.1  ExxonMobil Chemical / Tonen Chemical Corporation  5-46

5.17     Front Edge Technology (FET) 5-47

5.18     GE   5-47

5.18.1  GE Global Research  5-48

5.18.2  GE Energy Financial Services  5-48

5.19     GM    5-48

5.19.1  General Motors Faces Bankruptcy  5-50

5.20     Ignite  5-51

5.21     IPS  5-51

5.22     Johnson Controls-Saft 5-52

5.23     KSW Microtec  5-52

5.24     LG Petrochemical 5-53

5.24.1  LG Chem   5-54

5.25     MMT Funds  5-54

5.26     NEC   5-54

5.26.1  Nissan Motor Co., Ltd., NEC, And Subsidiary

NEC TOKIN Joint-Venture Company – Automotive

Energy Supply Corporation (AESC) – 5-55

5.26.2  First Commercial Application For AESC’s Li-Ion Batteries  5-57

5.26.3  NEC TOKIN Lithium-Manganese Electrodes by 2009  5-59

5.26.4  Nissan Partnership With NEC   5-59

5.26.5  NEC Lamilion Energy  5-60

5.27     Oak Ridge Micro-Energy  5-60

5.28     Panasonic / Sanyo  5-61

5.29     QuantumSphere  5-63

5.30     Saft 5-64

5.30.1  Saft Battery Technologies  5-66

5.30.2  Saft Industrial Battery Group (IBG) 5-68

5.30.3  Saft Specialty Battery Group (SBG) 5-69

5.30.4  Saft Rechargeable Battery Systems (RBS) 5-71

5.30.5  Saft Research and Development 5-71

5.30.6  Johnson Controls-Saft United States Advanced

Battery Consortium (USABC) 5-72

5.31     Samsung  5-73

5.32     Solicore  5-73

5.32.1  Solicore’s Flexion® Batteries Bluechip Million Unit Purchase  5-74

5.32.2  Solicore Embedded Power Solutions  5-75

5.33     Think  5-75

5.34     Valence  5-76

5.34.1  Valence Strategy  5-77

5.34.2  Phases Of Valence Business Strategy  5-78

5.35     Ulvac  5-80

 

Tables and Figures
Table ES-1  ES-4

Lithium-Ion Battery Market Driving Forces 

Table ES-2  ES-6

Energy Advantages Of Thin-Film Batteries 

Figure ES-3  ES-8

Worldwide Lithium-Ion Thin Film Advanced Battery

Shipments, Market Shares, Dollars, 2008 

Figure ES-4  ES-10

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

 

Table 1-1  1-3

Principal Features Used To Compare Rechargeable Batteries 

Figure 1-2  1-8

BMW’s Mini E Electric Car Powered By A Rechargeable Lithium-Ion Battery 

Table 1-3  1-9

Examples of Hybrid Electric Vehicles 

Figure 1-4  1-19

Typical Structure Of A Thin Film Solid State Battery 

Table 1-5  1-22

Characteristics Of Battery Cells 

 

Table 2-1  2-4

Lithium-Ion Battery Market Driving Forces 

Table 2-2  2-6

Energy Advantages Of Thin-Film Batteries 

Figure 2-3  2-8

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Table 2-4  2-9

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Figure 2-5  2-12

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

Figure 2-6  2-13

Worldwide Lithium-Ion and Advanced Lithium-ion

Battery Market Forecasts,  Automotive, Power Tools,

Electric Grid, and PC Card,  Dollars, 2009-2015 

Figure 2-7  2-14

Worldwide Lithium-Ion Thin Film Automotive Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

Figure 2-8  2-15

Worldwide Lithium-Ion Thin Film Automotive Advanced Battery 

Shipments, Market Shares, Dollars, 2008 

 

Figure 2-9  2-21

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Dollars, 2009-2015 

Figure 2-10  2-22

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Units, 2009-2015 

Figure 2-11  2-23

Worldwide Lithium-Ion Thin Film Advanced Battery 

Shipments, Market Shares, Units and Dollars, 2009-2015 

Figure 2-12  2-30

Worldwide PC Card On Board Lithium-Ion Batteries 

Market Forecasts, Dollars, 2009-2015 

Figure 2-13  2-35

Worldwide Lithium-Ion Thin Film Cordless Tool Advanced Battery Shipments, Market Shares, Dollars, 2008 

Table 2-14  2-36

Worldwide Lithium-Ion Thin Film Cordless Tool Advanced Battery Shipments, Market Shares, Dollars, 2008 

Figure 2-15  2-38

Worldwide Lithium-Ion Battery Portable Power

Tool and Advanced Portable Battery Shipments,

Market Forecasts, Dollars, 2009-2015 

Figure 2-16  2-41

Worldwide Electric Grid Lithium-Ion Battery

Storage Market Forecasts, Dollars, 2009-2015 

Table 2-17  2-45

Commercialization Challenges Of The Automotive,

Truck, and Bus Thin Film Battery Industry 

Table 2-18  2-47

Integrated Thin Film Battery Personal Transport

Power Systems 

Table 2-19  2-49

Requirements For Advanced Power Sources In A

Variety Of Military Applications 

Table 2-20  2-50

Large-Format Lithium-Ion Battery Key Advantages 

Table 2-20 (Continued) 2-51

Large-Format Lithium-Ion Battery Key Advantages 

 

Figure 3-1  3-2

A123 Systems Lithium Ion Battery 

Table 3-2  3-3

A123 Systems APR18650M1 Features 

Figure 3-3  3-4

A123 Systems lithium ion battery Cells: 26650 

Figure 3-4  3-5

A123 Cells: 32 Series 

Figure 3-5  3-7

A123 Systems Hybrid Characteristics 

Figure 3-6  3-8

A123 Systems Hybrid Discharge Characteristics 

 

Table 3-7  3-9

A123 Systems Benefits…

Table 3-8  3-10

A123 Systems Heavy Duty Custom and Standard Solutions 

Figure 3-9  3-16

LG Chem Lithium-Ion Batteries 

Table 3-10  3-32

Saft Lithium Technologies 

Table 3-11  3-33

Saft Lithium-Ion Battery Main applications 

Table 3-11  (Continued) 3-34

Saft Lithium-Ion Battery Main applications 

Figure 3-12  3-35

Saft Non Rechargeable Battery 

Table 3-13  3-39

Saft Lithium-Ion Construction Features 

Table 3-14  3-40

Saft Lithium-Ion Battery Benefits 

Figure 3-15  3-42

Saft Lithium-Sulfur Dioxide (Li-SO2) Batteries 

Table 3-16  3-44

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-45

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-46

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-47

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-48

Saft Lithium-Ion Battery Variations 

Table 3-16  (Continued) 3-49

Saft Lithium-Ion Battery Variations 

Figure 3-17  3-57

EnerDel Automotive Battery 

Table 3-18  3-58

EnerDel Lithium Ion Battery System for HEVs 

Table 3-19  3-59

EnerDel Automotive Battery Features 

Table 3-20  3-60

Imara Thin Film Battery Cells 

Figure 3-21  3-65

NEC Fuel Cells and Catalysts 

Table 3-22  3-72

Key Features of Sony NP-FP71 Hybrid Lithium Ion

Rechargeable Battery 

Table 3-22  (Continued) 3-73

Key Features of Sony NP-FP71 Hybrid Lithium Ion

Rechargeable Battery 

Figure 3-23  3-74

Panasonic Lithium Batteries 

Figure 3-24  3-75

Panasonic Lithium-Ion Rechargable Batteries 

Table 3-25  3-76

Panasonic Rechargeable Lithium ion Batteries Features:

Table 3-26  3-76

Panasonic Rechargeable Lithium ion Batteries 

Table 3-27  3-77

Panasonic Rechargeable Lithium ion Batteries 

Table 3-28  3-85

Solicore Flexion Battery Product Features:

Table 3-29  3-86

Solicore’s Flexion Lithium Polymer Battery Applications 

Table 3-30  3-87

Solicore’s Flexion Lithium Polymer Battery Uses 

Figure 3-31  3-88

Solicore Flexion High Temperature Batteries Survive Lamination 

Table 3-31A   3-89

Solicore RFID (Radio Frequency Identification) Applications 

Table 3-32  3-96

Excellatron Nanotechnology Thin Film Battery Features 

Table 3-33  3-97

Excellatron Battery Advantages 

Table 3-34  3-99

Excellatron Battery Thin Film Solid State Battery Components 

Figure 3-35  3-102

Excellatron Thin Film Battery Charge/Discharge Profile at 25ºC.

Figure 3-36  3-103

Excellatron Thin Film Battery Charge/Discharge

Profile At 150ºC.

Figure 3-37  3-104

Excellatron High Temperature (150ºC) Charge And

Discharge Capacity 

Figure 3-38  3-106

Excellatron Capacity And Resistance Of Thin Film Battery

As A Function Of Temperature 

Figure 3-39  3-106

Excellatron’s Battery (0.1 mAh) Discharged By A 100 mA

Pulse at 80ºC.

Figure 3-40  3-108

Excellatron High Rate Pulse Discharge 

Figure 3-41  3-109

Long Term Cyclability Of A Thin Film Solid State Battery 

Figure 3-42: 3-110

Excellatron Thin Film Battery Long Term Cyclability 

Figure 3-43  3-111

Discharge Capacity Of Several Typical Cathode Materials 

Figure 3-44: 3-112

Excellatron Thin film batteries deposited on a thin polymer substrate.

Figure 3-45  3-114

Excellatron Proprietary Passivation Barrier and Packaging 

Table 3-46  3-115

Comparison Of Battery Performances 

Figure 3-47  3-131

Oak Ridge Construction of a Thin Film Battery 

Table 3-48  3-136

Key Features of Valence Lithium Phosphate Technology 

Table 3-49  3-139

ITN Commercial Markets:

Figure 3-50  3-140

ITN Thin Film Battery:

Table 3-51  3-141

ITN Thin Film Battery Design Features/Advantages 

Table 3-52  3-142

ITN Thin Film Battery Economical production 

Table 3-53  3-143

ITN Thin Film Battery Strengths 

Figure 3-54  3-145

ITN Intelligent Process Control

Figure 3-55  3-146

Framework of Intelligent Processing of Materials 

Figure 3-56  3-149

XRF Instrument Developed by ITN Used on a System  

Figure 3-57  3-150

Thin Film Deposition 

Figure 3- 58  3-150

ITP Thin-film Process 

Table 3-59  3-151

Thin-film Process Capabilities 

Table 3-60  3-152

ITNThin-film Material Processing Experience Metals 

 

Table 4-1  4-4

Challenges in Lithium-ion Battery Design 

Table 4-2  4-35

Thin Film Battery Unique Properties 

Table 4-3  4-38

Comparison of battery performances 

Table 4-4  4-40

Comparison of battery performances 

Table 4-5  4-42

Thin Films For Advanced Batteries 

Table 4-6  4-43

Thin Film Batteries Technology 

Table 4-7  4-44

Thin Film Battery / Lithium Air Batteries Applications 

Figure 4-8  4-45

Polymer Film Substrate Thin Flexible battery Profiles 

Figure 4-9  4-46

Design Alternatives of Thin Film Rechargable Batteries 

 

Table 5-1  5-3

A123 Systems Batteries Benefits 

Table 5-2  5-5

A123 Systems Competitive Positioning 

Table 5-2  (Continued) 5-6

A123 Systems Competitive Positioning 

Table 5-2  (Continued) 5-7

A123 Systems Competitive Positioning 

Figure 5-3  5-19

Boston-Power Charge Curve 

 

Figure 5-4  5-20

Boston-Power Discharge Curve 

Figure 5-5  5-35

EnerDel Operations 

Figure 5-6  5-36

EnerDel Lithium Power Systems 

Figure 5-7  5-37

EnerDel Lithium Power USABC Contracts 

Figure 5-8  5-38

EnerDel Lithium Power Think Projct

Figure 5-9  5-63

Sanyo Battery Targets 2020 

Figure 5-10  5-65

Saft Sales Segments Half 1, 2008 

Figure 5-11  5-67

Saft Revenue H1 2008 

Figure 5-12  5-81

Ulvac Vacuum Pumps, Gauges, and Valves
 
 For More information please contact

http://w

About the Author

Minal H
SEO
vinod.minal@gmail.com
http://www.aarkstore.com

Earnings Report: Nokia (NYSE:NOK) Profits Jump 65%, Smartphone Market Share Up 11%